

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Transcat Biomedical

1228 State Route 487 Paxinos, PA 17860

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

 \mathbb{N}

Jason Stine, Vice President

Expiry Date: 07 September 2025 Certificate Number: AC-2489.19

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

Transcat Biomedical

1228 State Route 487 Paxinos, PA 17860 Lance Hopkins 570-509-2910 ext. 6843 lance.hopkins@transcat.com

CALIBRATION

Valid to: September 7, 2025

Certificate Number: AC-2489.19

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(30 to 330) μ A (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (0.33 to 3.3) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (3.3 to 33) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (33 to 330) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (3 to 330) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (1 to	0.25 % of reading + 0.12 μ A 0.098 %% of reading + 0.12 μ A 0.097 %% of reading + 0.12 μ A 0.31 %% of reading + 0.12 μ A 0.16 %% of reading + 0.23 μ A 0.16 %% of reading + 0.23 μ A 0.078 %% of reading + 0.23 μ A 0.16 %% of reading + 0.23 μ A 0.16 %% of reading + 0.23 μ A 0.47 %% of reading + 2.3 μ A 0.16 %% of reading + 2.3 μ A 0.079 %% of reading + 2.3 μ A 0.16 % of reading + 2.3 μ A 0.16 % of reading + 2.3 μ A 0.078 % of reading + 2.3 μ A 0.07 % of reading + 2.3 μ A 0.16 % of reading + 2.3 μ A 0.07 % of reading + 2.3 μ A 0.07 % of reading + 2.3 μ A	Fluke 5500A Multiproduct Calibrator

7, 2024

www.anab.org

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(0.33 to 2.2) A (10 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (2.2 to 10) A (10 to 65) Hz (65 to 500) Hz 500 Hz to 1 kHz	0.16 % of reading + 0.23 mA 0.078 % of reading + 0.23 mA 0.58 % of reading + 0.23 mA 0.047 % of reading + 1.6 mA 0.078 % of reading + 1.6 mA 0.26 % of reading + 1.6 mA	Fluke 5500A Multiproduct Calibrator
DC Current – Source ¹	(0 to 3.3) mA (3.3 to 33) mA (33 to 330) mA (0.33 to 2.2) A (2.2 to 11) A	0.01 % of reading + 40 nA 0.01 % of reading + 0.19 μA 0.008 % of reading + 2.5 μA 0.025 % of reading + 34 μA 0.047 % of reading + 0.26 mA	Fluke 5500A Multiproduct Calibrator
Capacitance – Source ¹	$\begin{array}{c} (0.33 \ {\rm to} \ 11) \ {\rm nF} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (11 \ {\rm to} \ 110) \ {\rm nF} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (110 \ {\rm to} \ 330) \ {\rm nF} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (0.33 \ {\rm to} \ 1.1) \ {\rm \mu f} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (1.1 \ {\rm to} \ 3.3) \ {\rm \mu f} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (3.3 \ {\rm to} \ 1.1) \ {\rm \mu f} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (11 \ {\rm to} \ 3.3) \ {\rm \mu f} \\ (50 \ {\rm to} \ 1 \ 000) \ {\rm Hz} \\ (11 \ {\rm to} \ 3.3) \ {\rm \mu f} \\ (50 \ {\rm to} \ 400) \ {\rm Hz} \\ (11 \ {\rm to} \ 3.3) \ {\rm \mu f} \\ (50 \ {\rm to} \ 400) \ {\rm Hz} \\ (11 \ {\rm to} \ 3.3) \ {\rm \mu f} \\ (50 \ {\rm to} \ 200) \ {\rm Hz} \\ (110 \ {\rm to} \ 330) \ {\rm \mu f} \\ (50 \ {\rm to} \ 100) \ {\rm Hz} \\ (0.33 \ {\rm to} \ 1.1) \ {\rm mf} \\ (50 \ {\rm to} \ 100) \ {\rm Hz} \end{array}$	0.41 % of reading + 7.8 pF 0.22 % of reading + 7.8 pF 0.22 % of reading + 0.23 nF 0.22 % of reading + 0.23 nF 0.22 % of reading + 0.77 nF 0.22 % of reading + 2.3 nF 0.22 % of reading + 7.8 nF 0.33 % of reading + 7.8 nF 0.45 % of reading + 78 nF 0.59 % of reading + 0.23 μF 0.85 % of reading + 0.23 μF	Fluke 5500A Multiproduct Calibrator
Resistance – Source ¹	$\begin{array}{c} (0 \text{ to } 11) \ \Omega \\ (11 \text{ to } 33) \ \Omega \\ (33 \text{ to } 110) \ \Omega \\ (110 \text{ to } 330) \ \Omega \\ (0.33 \text{ to } 1.1) \ k\Omega \\ (1.1 \text{ to } 3.3) \ k\Omega \\ (3.3 \text{ to } 11) \ k\Omega \\ (11 \text{ to } 33) \ k\Omega \end{array}$	$\begin{array}{c} 0.009 \ \% \ \text{of reading} + 4.6 \ \text{m}\Omega \\ 0.009 \ \% \ \text{of reading} + 7.7 \ \text{m}\Omega \\ 0.007 \ \% \ \text{of reading} + 7.7 \ \text{m}\Omega \\ 0.007 \ \% \ \text{of reading} + 7.7 \ \text{m}\Omega \\ 0.007 \ \% \ \text{of reading} + 47 \ \text{m}\Omega \\ 0.007 \ \% \ \text{of reading} + 47 \ \text{m}\Omega \\ 0.007 \ \% \ \text{of reading} + 47 \ \text{m}\Omega \\ 0.007 \ \% \ \text{of reading} + 0.47 \ \Omega \\ 0.007 \ \% \ \text{of reading} + 0.47 \ \Omega \end{array}$	Fluke 5500A Multiproduct Calibrator

www.anab.org

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Source ¹	$\begin{array}{c} (33 \text{ to } 110) \text{ k}\Omega \\ (110 \text{ to } 330) \text{ k}\Omega \\ (0.33 \text{ to } 1.1) \text{ M}\Omega \\ (1.1 \text{ to } 3.3) \text{ M}\Omega \\ (3.3 \text{ to } 11) \text{ M}\Omega \\ (11 \text{ to } 33) \text{ M}\Omega \\ (33 \text{ to } 110) \text{ M}\Omega \\ (110 \text{ to } 330) \text{ M}\Omega \end{array}$	0.009 % of reading + 4.7 Ω 0.009 % of reading + 4.7 Ω 0.012 % of reading + 43 Ω 0.013 % of reading + 43 Ω 0.047 % of reading + 0.43 kΩ 0.086 % of reading + 0.43 kΩ 0.4 % of reading + 4.3 kΩ	Fluke 5500A Multiproduct Calibrator
AC Voltage – Source ¹	$(110 to 330) M\Omega 2$ $(1 to 33) mV$ $(10 to 45) Hz$ $45 Hz to 10 kHz$ $(20 to 50) kHz$ $(20 to 50) kHz$ $(50 to 100) kHz$ $(100 to 500) kHz$ $(33 to 330) mV$ $(10 to 45) Hz$ $45 Hz to 10 kHz$ $(100 to 500) kHz$ $(20 to 50) kHz$ $(20 to 50) kHz$ $(100 to 500) kHz$ $(20 to 50) kHz$ $(20 to 50) kHz$ $(10 to 45) Hz$ $45 Hz to 10 kHz$ $(100 to 500) kHz$ $(20 to 50) kHz$ $(20 to 50) kHz$ $(20 to 50) kHz$ $(20 to 50) kHz$ $(100 to 500) kHz$ $(100 to 500) kHz$ $(20 to 50) kHz$ $(50 to 100) kHz$ $(100 to 500) kHz$ $(3.3 to 33) V$ $(10 to 45) Hz$ $45 Hz to 10 kHz$ $(100 to 500) kHz$ $(33 to 330) V$ $45 Hz to 1 kHz$ $(1 to 10) kHz$ $(1 to 10) kHz$ $(10 to 20) kHz$ $(1 to 10) kHz$ $(1 to 20) kHz$	0.27 % of reading + 4.3 kΩ 0.27 % of reading + 16 μ V 0.12 % of reading + 16 μ V 0.16 % of reading + 16 μ V 0.19 % of reading + 16 μ V 0.27 % of reading + 26 μ V 0.78 % of reading + 39 μ V 0.039 % of reading + 39 μ V 0.039 % of reading + 16 μ V 0.12 % of reading + 16 μ V 0.12 % of reading + 0.13 mV 0.54 % of reading + 0.13 mV 0.54 % of reading + 0.26 mV 0.12 % of reading + 0.19 mV 0.062 % of reading + 46 μ V 0.19 % of reading + 46 μ V 0.19 % of reading + 46 μ V 0.11 % of reading + 46 μ V 0.12 % of reading + 46 μ V 0.12 % of reading + 46 μ V 0.13 % of reading + 2.6 mV 0.15 % of reading + 1.9 mV 0.15 % of reading + 3.9 mV 0.19 % of reading + 3.9 mV 0.19 % of reading + 13 mV 0.039 % of reading + 13 mV	Fluke 5500A Multiproduct Calibrator

www.anab.org

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(330 to 1 020) V 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.039 % of reading + 62 mV 0.16 % of reading + 78 mV 0.16 % of reading + 0.39 V	Fluke 5500A Multiproduct Calibrator
DC Voltage – Source ¹	(0 to 330) mV (0.33 to 3.3) V (3.3 to 33) V (33 to 330) V (330 to 1 000) V	0.005 % of reading + 2.3 μV 0.004 % of reading + 3.9 μV 0.004 % of reading + 39 μV 0.004 % of reading + 0.39 mV 0.004 % of reading + 1.2 mV	Fluke 5500A Multiproduct Calibrator

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Source ¹	10 mHz to 2 MHz	19 μHz/Hz + 0.78 mHz	Fluke 5500A Multiproduct Calibrator

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope. CMC is for a controlled laboratory environment of 18 °C to 28 °C (65 °F to 82 °F), when outside of this environment, larger measurement uncertainties are expected than what is reported on the accredited scope.
- 2. The legal entity of this location is Transcat, Inc.
- 3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-2489.19.

Jason Stine, Vice President

