

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Transcat - Indianapolis 2845 Tobey Drive Indianapolis, IN 46219

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the fields of

CALIBRATION and DIMENSIONAL MEASUREMENT

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President

Expiry Date: 07 September 2025 Certificate Number: AC-2489.30

> This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

Transcat - Indianapolis

2845 Tobey Drive Indianapolis, IN 46219 Kevin Broderick (317) 487-2378

CALIBRATION AND DIMENSIONAL MEASUREMENT

Valid to: September 7, 2025

Certificate Number: AC-2489.30

CALIBRATION

Acoustics and Vibration

Parameter/Equipment	R	ange	Expanded Unc Measureme	·	Reference Standard, Method, and/or Equipment
	94 dB	0 Hz	0.4 dI		
Sam 11 and Margaria					C
Sound Level Measuring	1	kHz	0.4 dI	3	Comparison to
Devices ¹	114 dB	f.)	Sound Level Calibrator
	25	0 Hz	0.4 dI	3	
	1	kHz	0.4 dI	3	
Sound Level – Measure ¹	(35 to 130) d	lB			Comparison to
Sound Level – Measure	63 Hz	to 8 kHz	1.8 dI	3	Sound Level Meter

Chemical Quantities

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
pH Meters ^{1,2}	4 pH 7 pH 10 pH	0.012 pH 0.012 pH 0.012 pH	Comparison to Accredited Solutions

Chemical Quantities

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Conductivity Meters ^{1,2}	5 μS/cm 10 μS/cm 100 μS/cm 1 000 μS/cm 10 000 μS/cm 100 000 μS/cm	0.32 μS/cm 0.32 μS/cm 0.82 μS/cm 3.3 μS/cm 36 μS/cm 300 μS/cm	Comparison to Accredited Solutions
Refractometers ¹	150 000 μS/cm (1.3 to 1.395) nD	590 μS/cm 0.0006 nD	Comparison to
	(0 to 30) % Brix	0.032 % Brix	Accredited Solutions
Gas Monitors and Detectors ¹ CO (Carbon Monoxide) CO ₂ (Carbon Dioxide)	0.002 5 % CO 0.005 % CO 0.01 % CO 0.03 % CO 1 % CO ₂ 3 % CO ₂ 5 % CO ₂ 15 % CO ₂	0.000 15 % CO 0.000 22 % CO 0.000 28 % CO 0.000 63 % CO 0.025 % CO ₂ 0.068 % CO ₂ 0.11 % CO ₂ 0.31 % CO ₂	Comparison to Accredited Gases
H ₂ S (Hydrogen Sulfide)	0.002 5 % H ₂ S	0.000 13 % H ₂ S	Activated Gases
LEL (Methane) O ₂ (Oxygen)	20 % LEL 50 % LEL 18 % O ₂	2 % LEL 2.2 % LEL 0.48 % O ₂	
SO ₂ (Sulfur Dioxide)	20.9 % O ₂ 0.001 % SO ₂	0.53 % O ₂ 0.000 03 % SO ₂	

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
pH Meter Simulation ¹ (Electrical)	(0 to 15) pH	0.001 pH	Comparison to Fluke 5522A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Conductivity Meter Simulation ¹ (Resistance)	(10 to 100) μS (101 to 1000) μS (1001 to 10 000) μS (10 001 to 100 000) μS (100 001 to 1 000 000) μS	0.08 μS 0.09 μS 0.08 μS 0.06 μS 0.04 μS	Comparison to Fluke 5522A Multiproduct Calibrator
AC Current – Source ¹	Up to 220 μ A (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2 to 220) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) A 20 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (1	0.025 % of reading + 16 nA 0.016 % of reading + 10 nA 0.011 % of reading + 8 nA 0.028 % of reading + 12 nA 0.11 % of reading + 12 nA 0.11 % of reading + 65 nA 0.025 % of reading + 35 nA 0.016 % of reading + 35 nA 0.021 % of reading + 0.11 μ A 0.11 % of reading + 0.65 μ A 0.025 % of reading + 0.4 μ A 0.016 % of reading + 0.35 μ A 0.011 % of reading + 0.35 μ A 0.021 % of reading + 0.55 μ A 0.021 % of reading + 10 μ A 0.025 % of reading + 4 μ A 0.016 % of reading + 2.5 μ A 0.011 % of reading + 3.5 μ A 0.011 % of reading + 3.5 μ A 0.011 % of reading + 3.5 μ A 0.021 % of reading + 3.5 μ A 0.025 % of reading + 3.5 μ A 0.045 % of reading + 3.5 μ A 0.045 % of reading + 3.5 μ A	Comparison to Fluke 5730A/03 Multiproduct Calibrator
AC Current – Source ¹	(2.2 to 11) A 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.048 % of reading + 0.17 mA 0.096 % of reading + 0.38 mA 0.36 % of reading + 0.75 mA	Comparison to Fluke 5730A/03 Multiproduct Calibrator, Fluke 5725A Amplifier

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(11 to 20.5) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	0.095 % of reading + 3.9 mA 0.12 % of reading + 3.9 mA 2.3 % of reading + 3.9 mA	Comparison to Fluke 5522A Multiproduct Calibrator
AC Clamp-on Ammeters (Toroidal Type) Transformer Type Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.31 % of reading + 26 mA 0.84 % of reading + 47 mA 0.35 % of reading + 0.12 A 1.2 % of reading + 0.22 A	Comparison to Fluke 5522A Multiproduct Calibrator, Fluke 5500A/Coil 50-turn Coil
AC Clamp-on Ammeters (Non-Toroidal Type) Hall Effect Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.58 % of reading + 0.25 A 1.1 % of reading + 0.25 A 0.6 % of reading + 0.9 A 1.3 % of reading + 0.92 A	Comparison to Fluke 5522A Multiproduct Calibrator, Fluke 5500A/Coil 50-turn Coil
AC Clamp-on Ammeter (Non-Toroidal Type) Hall Effect Sensor ¹	(1 to 6) kA (10 to 300) Hz (1 to 2) kA (300 to 440) Hz (2 to 6) kA (300 to 440) Hz	0.6 % of reading 0.8 % of reading 0.66 % of reading	Comparison to Fluke 5522A Multiproduct Calibrator, Fluke 52120A Transconductance Amplifier, 3 kA and 6 kA Coil
AC Current – Measure ¹	Up to 200 µA 1 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (0.2 to 2) mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (2 to 20) mA (1 to 10) Hz 10 Hz to 10 kHz (30 to 100) kHz (30 to 100) kHz (20 to 200) mA 1 Hz to 10 Hz 10 Hz to 10 kHz (10 to 30) kHz	 0.031 % of reading + 20 nA 0.071 % of reading + 20 nA 0.4 % of reading + 20 nA 0.031 % of reading + 0.2 μA 0.03 % of reading + 0.2 μA 0.071 % of reading + 0.2 μA 0.031 % of reading + 0.2 μA 0.031 % of reading + 2 μA 0.03 % of reading + 2 μA 0.031 % of reading + 2 μA 0.071 % of reading + 2 μA 0.071 % of reading + 2 μA 0.031 % of reading + 2 μA 0.063 % of reading + 20 μA 0.063 % of reading + 20 μA 	Comparison to Fluke 8508A 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(0.2 to 2) A 10 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz	0.062 % of reading + 0.2 mA 0.074 % of reading + 0.2 mA 0.3 % of reading + 0.2 mA 0.082 % of reading + 2 mA 0.25 % of reading + 2 mA	Comparison to Fluke 8508A 8.5 Digit Multimeter
AC Voltage – Source ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (300 to 500) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 220) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (50 to 100) kHz (300 to 500) kHz (300 kHz to 1 MHz	0.16 % of reading + 4 μ V 0.1 % of reading + 4 μ V 0.078 % of reading + 4 μ V 0.13 % of reading + 4 μ V 0.13 % of reading + 4 μ V 0.17 % of reading + 5 μ V 0.33 % of reading + 20 μ V 0.47% of reading + 20 μ V 0.47% of reading + 20 μ V 0.042 % of reading + 4 μ V 0.03 % of reading + 4 μ V 0.014 % of reading + 4 μ V 0.058 % of reading + 4 μ V 0.058 % of reading + 4 μ V 0.058 % of reading + 20 μ V 0.12 % of reading + 20 μ V 0.12 % of reading + 20 μ V 0.16 % of reading + 20 μ V 0.028 % of reading + 12 μ V 0.0011 % of reading + 7 μ V 0.0011 % of reading + 7 μ V 0.021 % of reading + 7 μ V 0.047 % of reading + 7 μ V 0.091 % of reading + 20 μ V	Comparison to Fluke 5730A/03 Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(0.22 to 2.2) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz (20 to 22) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (300 to 500) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 220) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 40) Hz 40 Hz to 20 kHz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (300 to 500) kHz	0.027 % of reading + 40 μ V 0.01 % of reading + 15 μ V 0.005 % of reading + 8 μ V 0.008 % of reading + 10 μ V 0.012 % of reading + 30 μ V 0.043 % of reading + 30 μ V 0.043 % of reading + 0.2 mV 0.18 % of reading + 0.2 mV 0.18 % of reading + 0.4 mV 0.028 % of reading + 0.4 mV 0.005 % of reading + 0.15 mV 0.005 % of reading + 50 μ V 0.008 % of reading + 0.1 mV 0.011 % of reading + 0.2 mV 0.03 % of reading + 0.2 mV 0.17 % of reading + 2 mV 0.17 % of reading + 3.2 mV 0.028 % of reading + 4 mV 0.016 % of reading + 1.5 mV 0.006 % of reading + 1 mV 0.016 % of reading + 16 mV 0.016 % of reading + 16 mV 0.44 % of reading + 40 mV 0.8 % of reading + 40 mV	Comparison to Fluke 5730A/03 Multiproduct Calibrator
AC Voltage – Source ¹	(220 to 1 100) V 40 Hz to 1 kHz (1 to 20) kHz (20 to 30) kHz	0.011 % of reading + 4 mV 0.017 % of reading + 6 mV 0.061 % of reading + 11 mV	Comparison to Fluke 5730A/03 Multiproduct Calibrator, Fluke 5725A Amplifier
AC Voltage – Source ¹ Extended Frequency Ranges	(220 to 750) V (30 to 50) kHz (50 to 100) kHz	0.061 % of reading + 11 mV 0.23 % of reading + 45 mV	Comparison to Fluke 5730A/03 Multiproduct Calibrator, Fluke 5725A Amplifier

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	Up to 200 mV (1 to 10) Hz (10 to 40) Hz (40 to 100) Hz (0.1 to 2) kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (0.2 to 2) V (1 to 10) Hz (10 to 40) Hz (40 to 100) Hz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (10 to 300) kHz (0.3 to 1) MHz (2 to 20) V (1 to 10) Hz (10 to 40) Hz (40 to 100) Hz (0.1 to 2) kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (10 to 300) kHz (10 to 40) Hz (10 to 40) Hz (10 to 40) Hz (10 to 300) kHz (20 to 200) V (1 to 10) Hz (10 to 40) Hz (2 to 100) kHz (10 to 30) kHz (2 to 100) kHz (10 to 30) kHz (2 to 100) kHz (10 to 30) kHz (2 to 100) kHz (10 to 30) kHz (30 to 100) kHz (10 to 30) kHz (10 t	0.021 % of reading + 14 μ V 0.017 % of reading + 4 μ V 0.014 % of reading + 4 μ V 0.013 % of reading + 2 μ V 0.016 % of reading + 2 μ V 0.016 % of reading + 4 μ V 0.09 % of reading + 20 μ V 0.019 % of reading + 20 μ V 0.011 % of reading + 20 μ V 0.011 % of reading + 20 μ V 0.013 % of reading + 20 μ V 0.026 % of reading + 40 μ V 0.026 % of reading + 0.2 mV 0.026 % of reading + 0.2 mV 0.37 % of reading + 0.2 mV 0.014 % of reading + 0.2 mV 0.014 % of reading + 0.2 mV 0.013 % of reading + 0.2 mV 0.013 % of reading + 0.2 mV 0.013 % of reading + 0.2 mV 0.026 % of reading + 0.2 mV 0.026 % of reading + 20 mV 2.2 % of reading + 20 mV 2.2 % of reading + 20 mV 0.014 % of reading + 20 mV 0.013 % of reading + 2 mV 0.013 % of reading + 2 mV 0.013 % of reading + 2 mV 0.014 % of reading + 2 mV 0.014 % of reading + 2 mV 0.013 % of reading + 2 mV 0.014 % of reading + 2 mV 0.013 % of reading + 2 mV 0.013 % of reading + 2 mV 0.014 % of reading + 2 mV 0.013 % of reading + 2 mV 0.013 % of reading + 2 mV 0.014 % of reading + 2 mV 0.015 % of reading + 2 mV 0.015 % of reading + 20 mV 0.015 % of reading + 20 mV 0.015 % of reading + 20 mV 0.014 % of reading + 20 mV 0.015 % of reading + 20 mV 0.015 % of reading + 20 mV 0.014 % of reading + 20 mV 0.015 % of reading + 20 mV	Comparison to Fluke 8508A 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC High Voltage – Measure ¹	Up to 28 kV 60 Hz	5.2 % of reading + 1.7 V	Comparison to Keysight 34401A 6.5 Digit Multimeter, Fluke 80K-40 High Voltage Probe
Capacitance – Source ¹ (Simulation)	$\begin{array}{c} (0.22 \text{ to } 0.4) \text{ nF} \\ (0.4 \text{ to } 1.1) \text{ nF} \\ (1.1 \text{ to } 3.3) \text{ nF} \\ (3.3 \text{ to } 11) \text{ nF} \\ (11 \text{ to } 33) \text{ nF} \\ (33 \text{ to } 110) \text{ nF} \\ (110 \text{ to } 330) \text{ nF} \\ (0.33 \text{ to } 1.1) \mu\text{F} \\ (1.1 \text{ to } 3.3) \mu\text{F} \\ (3.3 \text{ to } 11) \mu\text{F} \\ (11 \text{ to } 33) \mu\text{F} \end{array}$	0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.21 % of reading + 7.8 pF 0.2 % of reading + 7.8 pF 0.2 % of reading + 78 pF 0.2 % of reading + 0.23 nF 0.21 % of reading + 0.78 nF 0.21 % of reading + 2.3 nF 0.22 % of reading + 7.8 nF 0.32 % of reading + 23 nF	Comparison to Fluke 5522A Multiproduct Calibrator
Capacitance – Source ¹ (Simulation)	(33 to 110) μF (110 to 330) μF (0.33 to 1.1) mF (1.1 to 3.3) mF (3.3 to 11) mF (11 to 33) mF (33 to 110) mF	0.37 % of reading + 78 nF 0.38 % of reading + 0.23 μF 0.35 % of reading + 0.78 μF 0.35 % of reading + 2.3 μF 0.35 % of reading + 7.8 μF 0.58 % of reading + 23 μF 0.85 % of reading + 78 μF	Comparison to Fluke 5522A Multiproduct Calibrator
Capacitance – Measure ¹	1 kHz (1 to 1 000) pF (1 to 1 000) nF (1 to 1 000) μF	0.5 fF/pF + 23 fF 0.5 pF/nF + 0.88 pF 4.2 nF/µF	Comparison to Hameg LCR Meter
DC Current – Source ¹	(0 to 220) μA (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA (0.22 to 2.2) A	$\begin{array}{c} 40 \ \mu A/A + 6 \ nA \\ 35 \ \mu A/A + 7 \ nA \\ 35 \ \mu A/A + 40 \ nA \\ 45 \ \mu A/A + 0.7 \ \mu A \\ 80 \ \mu A/A + 12 \ \mu A \end{array}$	Comparison to Fluke 5730A/03 Multiproduct Calibrator
DC Current – Source ¹	(2.2 to 3) A (3 to 11) A (11 to 20.5) A	0.3 mA/A + 31 µA 0.51 mA/A + 0.39 mA 0.93 mA/A + 0.58 mA	Comparison to Fluke 5522A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Clamp-on Ammeters (Non-Toroidal Type) Hall Effect Sensor ¹	(20 to 150) A (150 to 1 000) A (1 000 to 5 000) A	0.51 % of reading + 0.14 A 0.51 % of reading + 0.5 A 0.58 % of reading	Comparison to Fluke 5522A Multiproduct Calibrator, Fluke 5500A/COIL, Fluke 55120A Transconductance Amplifier, 1 kA and 6 kA Coils
DC Current – Measure ¹	Up to 200 µA (0.2 to 2) mA (2 to 20) mA (20 to 200) mA (0.2 to 2) A (2 to 20) A	13 μ A/A + 0.31 nA 13 μ A/A + 3.1 nA 14 μ A/A + 31 nA 47 μ A/A + 0.62 μ A 0.18 mA/A + 12 μ A 0.39 mA/A + 0.31 mA	Comparison to Fluke 8508A 8.5 Digit Multimeter
DC Current – Measure ¹	(0 to 500) A	0.2 mA/A + 0.16 A	Comparison to Fluke 8508A 8.5 Digit Multimeter, DC Current Shunt
DC Voltage – Source ¹	(0 to 220) mV (0.22 to 2.2) V (2.2 to 11) V (11 to 22) V (22 to 220) V (220 to 1 100) V	$7.5 \ \mu V/V + 0.4 \ \mu V \\ 5 \ \mu V/V + 0.7 \ \mu V \\ 3.5 \ \mu V/V + 2.5 \ \mu V \\ 3.5 \ \mu V/V + 4 \ \mu V \\ 5 \ \mu V/V + 40 \ \mu V \\ 6.5 \ \mu V + 0.4 \ m V \\ \end{array}$	Comparison to Fluke 5730A/03 Multiproduct Calibrator
DC Voltage – Source ¹ (Fixed Point)	10 V	0.31 µV/V	Comparison to Fluke 732A DC Voltage Reference Standard
DC Voltage – Measure ¹	Up to 200 mV (0.2 to 2) V (2 to 20) V (20 to 200) V (200 to 1 000) V	5.2 μ V/V + 90 nV 3.6 μ V/V + 0.39 μ V 3.5 μ V/V + 3.9 μ V 5.5 μ V/V + 39 μ V 5.5 μ V/V + 0.47 mV	Comparison to Fluke 8508A 8.5 Digit Multimeter
DC High Voltage – Measure ¹	(1 to 20) kV (20 to 35) kV (35 to 40) kV	2 % of reading 1 % of reading 2 % of reading	Comparison to Keysight 34401A 6.5 Digit Multimeter, Fluke 80K-40 High Voltage Probe

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Power – Source ^{1,2,4}			
PF = 1			
(3.3 to 9) mA	(10 to 65) Hz		
	110 µW to 3 mW	0.13 % of reading	
	3 mW to 9 W	0.0 <mark>77 % o</mark> f reading	
(9 to 33) mA	(10 to 65) W		
	$300 \ \mu W$ to $10 \ m W$	0.089 % of reading	
	10 mW to 33 W	0.077 % of reading	
(33 to 90) mA	(10 to 65) Hz		
	(1 to 30) mW	0.071 % of reading	
	30 mW to 90 W	0.057 % of reading	
(90 to 330) mA	(10 to 65) Hz		Comparison to
	(3 to 100) mW	0.089 % of reading	Fluke 5520A
	100 mW to 300 W	0.078 % of reading	Multiproduct Calibrator
(330 to 900) mA	(10 to 65) Hz		
	(11 to 300) mW	0.071 % of reading	
	300 mW to 900 W	0.081 % of reading	
900 mA to 2.2 A	(10 to 65) Hz		
	(30 to 720) mW	0.089 % of reading	
	0.72 W to 2 kW	0.079 % of reading	
(2.2 to 4.5) A	(10 to 65) Hz		
	80 mW to 1.4 W	0.088 % of reading	
	1.4 W to 4.5 kW	0.18 % of reading	
(4.5 to 20.5) A	(10 to 65) Hz		
	150 mW to 20kW	0.17 % of reading	
DC Power – Source ¹			
330 µW to 330 mA	11 μW to 1.1 mW	0.024 % of reading	
	(1.1 to 110) mW	0.027 % of reading	
	110 mW to 110 W	0.024 % of reading	
	(110 to 330) W	0.018 % of reading	
			Comparison to
330 mA to 3 A	11 µW to 110 mW	0.044 % of reading	Fluke 5520A
	110 mW to 990 W	0.053 % of reading	Multiproduct Calibrator
	990 W to 3 kW	0.01 % of reading	_
(3 to 20.5) A		0.088 % of reading	
	0.99 W to 6.8 kW	0.07 % of reading	
	(6.8 to 20.5) kW	0.04 % of reading	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase – Source ¹	(0 to 90)° (10 to 65) Hz (65 to 500) Hz 500 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 30) kHz Pt 385, 100 Ω	0.11° 0.21° 0.39° 1.9° 3.9° 7.8°	Comparison to Fluke 5522A Multiproduct Calibrator
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 385, 100 Ω^2 (-200 to -80) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C (630 to 800) °C (630 to 800) °C (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (400 to 600) °C (600 to 630) °C (-200 to -80) °C (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (260 to 300) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (400 to 600) °C (600 to 630) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (400 to 600) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (500 to 630) °C	$\begin{array}{c} 0.039 \ ^{\circ}\text{C} \\ 0.039 \ ^{\circ}\text{C} \\ 0.054 \ ^{\circ}\text{C} \\ 0.071 \ ^{\circ}\text{C} \\ 0.071 \ ^{\circ}\text{C} \\ 0.071 \ ^{\circ}\text{C} \\ 0.093 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.039 \ ^{\circ}\text{C} \\ 0.093 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.039 \ ^{\circ}\text{C} \\ 0.047 \ ^{\circ}\text{C} \\ 0.085 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.023 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.035 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.035 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.035 \ ^{\circ}\text{C} \\ 0.031 \ ^{\circ}\text{C} \\ 0.034 \ ^{\circ}\text{C} \\ 0.054 \ ^{\circ}\text{C} \\ 0.054 \ ^{\circ}\text{C} \\ 0.054 \ ^{\circ}\text{C} \\ 0.18 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5522A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 3916, 100 Ω (-200 to -190) °C (-190 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C Pt 3926, 100 Ω (-200 to -80) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C PtNi 385, 120 Ω (-80 to 0) °C (0 to 100) °C (100 to 260) °C Cu 427, 10 Ω	0.19 °C 0.031 °C 0.039 °C 0.047 °C 0.054 °C 0.062 °C 0.078 °C 0.078 °C 0.039 °C 0.039 °C 0.039 °C 0.054 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.054 °C 0.078 °C 0.078 °C 0.054 °C 0.054 °C 0.054 °C 0.054 °C 0.054 °C 0.039 °C 0.039 °C 0.054 °C 0.039 °C 0.039 °C 0.054 °C 0.039 °C 0.054 °C 0.039 °C 0.039 °C 0.039 °C 0.039 °C 0.054 °C 0.039 °C 0.039 °C 0.054 °C 0.039 °C 0.054 °C 0.039 °C 0.054 °C 0.039 °C 0.054 °C 0.062 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.054 °C 0.039 °C 0.054 °C 0.054 °C 0.054 °C 0.054 °C 0.054 °C 0.054 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.039 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.078 °C 0.093 °C 0.093 °C 0.093 °C	Comparison to Fluke 5522A Multiproduct Calibrator
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	$\begin{array}{c} (-100 \text{ to } 260) \ ^{\circ}\text{C} \\ \hline \text{Type B} \\ (600 \text{ to } 800) \ ^{\circ}\text{C} \\ (800 \text{ to } 1 \ 000) \ ^{\circ}\text{C} \\ (1 \ 000 \text{ to } 1 \ 550) \ ^{\circ}\text{C} \\ (1 \ 550 \text{ to } 1 \ 820) \ ^{\circ}\text{C} \\ (1 \ 550 \text{ to } 1 \ 820) \ ^{\circ}\text{C} \\ (1 \ 550 \text{ to } 150) \ ^{\circ}\text{C} \\ (1 \ 500 \text{ to } 550) \ ^{\circ}\text{C} \\ (1 \ 500 \text{ to } 550) \ ^{\circ}\text{C} \\ (650 \text{ to } 1000) \ ^{\circ}\text{C} \\ (1 \ 800 \text{ to } 2 \ 316) \ ^{\circ}\text{C} \\ (1 \ 800 \text{ to } 2 \ 316) \ ^{\circ}\text{C} \\ (-25 \text{ to } 350) \ ^{\circ}\text{C} \\ (-25 \text{ to } 350) \ ^{\circ}\text{C} \\ (350 \text{ to } 650) \ ^{\circ}\text{C} \\ (350 \text{ to } 650) \ ^{\circ}\text{C} \\ (650 \text{ to } 1 \ 000) \ ^{\circ}\text{C} \end{array}$	0.23 °C 0.35 °C 0.28 °C 0.24 °C 0.24 °C 0.24 °C 0.24 °C 0.24 °C 0.24 °C 0.39 °C 0.39 °C 0.39 °C 0.13 °C 0.12 °C 0.13 °C 0.17 °C	Comparison to Fluke 5522A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹ (((1) Type (1) (1) Type (1) (1) Type (1) (1) Type (1) (1) Type (1) (1) Type (1) (1) Type (1) (1) Type (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(-210 to -100) °C (-100 to -30) °C (-30 to 150) °C (150 to 760) °C 760 to 1 200) °C (760 to 1 200) °C (-100 to -25) °C (-25 to 120) °C 120 to 1 000) °C (000 to 1 372) °C L (-200 to -100) °C (-100 to 800) °C (-100 to 800) °C (-100 to -25) °C (-25 to 120) °C (-25 to 120) °C (-25 to 120) °C (120 to 410) °C 410 to 1 300) °C (250 to 400) °C (250 to 400) °C (250 to 400) °C (250 to 1 000) °C (0 to 250) °C (250 to 1 000) °C (0 to 250) °C (-25 to 1 000) °C (-150 to 0) °C (-150 to 0) °C (-120 to 400) °C	$\begin{array}{c} 0.21 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.18 \ ^{\circ}\text{C} \\ 0.15 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.15 \ ^{\circ}\text{C} \\ 0.15 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.29 \ ^{\circ}\text{C} \\ 0.29 \ ^{\circ}\text{C} \\ 0.26 \ ^{\circ}\text{C} \\ 0.32 \ ^{\circ}\text{C} \\ 0.29 \ ^{\circ}\text{C} \\ 0.36 \ ^{\circ}\text{C} \\ 0.36 \ ^{\circ}\text{C} \\ 0.49 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.44 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.44 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5522A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Magnetic Flux Density – Source ^{1,5} (Gauss Meters)	(0 to 35) G	0.26 % of reading	Comparison to Digital Multimeter, Helmholtz Coils
Resistance – Source ¹ (Simulated)	Up to 11 Ω (11 to 33) Ω (33 to 110) Ω (110 to 330) Ω (0.33 to 1.1) kΩ (1.1 to 3.3) kΩ (3.3 to 11) kΩ (11 to 33) kΩ (33 to 110) kΩ (110 to 330) kΩ (0.33 to 1.1) MΩ (1.1 to 3.3) MΩ (3.3 to 110) MΩ (110 to 330) MΩ (33 to 110) MΩ (110 to 330) MΩ (0.33 to 1.1) GΩ	$32 \mu\Omega/\Omega + 0.78 m\Omega$ $24 \mu\Omega/\Omega + 1.2 m\Omega$ $22 \mu\Omega/\Omega + 1.1 m\Omega$ $22 \mu\Omega/\Omega + 1.6 m\Omega$ $22 \mu\Omega/\Omega + 0.16 \Omega$ $22 \mu\Omega/\Omega + 0.16 \Omega$ $27 \mu\Omega/\Omega + 1.6 \Omega$ $26 \mu\Omega/\Omega + 1.6 \Omega$ $26 \mu\Omega/\Omega + 23 \Omega$ $0.11 m\Omega/\Omega + 23 \Omega$ $0.19 m\Omega/\Omega + 1.9 k\Omega$ $0.41 m\Omega/\Omega + 2.3 k\Omega$ $0.23 \% \text{ of reading} + 78 k\Omega$ $1.2 \% \text{ of reading} + 0.39 M\Omega$	Comparison to Fluke 5522A Multiproduct Calibrator
Resistance – Source ¹ (Fixed Points)	0 Ω $1 Ω$ $1.9 Ω$ $10 Ω$ $19 Ω$ $100 Ω$ $190 Ω$ $1 kΩ$ $1.9 kΩ$ $10 kΩ$ $19 kΩ$ $100 kΩ$ $190 kΩ$ $1 MΩ$ $1.9 MΩ$ $10 MΩ$ $19 MΩ$ $100 MΩ$	40 μ Ω 95 μ Ω/Ω 95 μ Ω/Ω 23 μ Ω/Ω 23 μ Ω/Ω 10 μ Ω/Ω 10 μ Ω/Ω 6.5 μ Ω/Ω 6.5 μ Ω/Ω 6.5 μ Ω/Ω 8.5 μ Ω/Ω 8.5 μ Ω/Ω 13 μ Ω/Ω 13 μ Ω/Ω 13 μ Ω/Ω 10 μ Ω/Ω	Comparison to Fluke 5730A/03 Multiproduct Calibrator
Resistance – Source ¹ (Fixed Artifacts)	1 Ω 10 kΩ	9.3 μΩ/Ω 7.6 μΩ/Ω	Comparison to Fluke 742A Resistance Standards

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	1 kΩ 10 kΩ 100 kΩ 1 MΩ	15 μΩ/Ω 15 μΩ/Ω 20 μΩ/Ω 25 μΩ/Ω	
Resistance – Source ¹ (Fixed Artifacts)		$\begin{array}{c} 31 \ \mu\Omega/\Omega \\ 0.013 \ \% \ of reading \\ 0.25 \ \% \ of reading \\ 0.45 \ \% \ of reading \\ \end{array}$	Comparison to Standard Resistors
DC Resistance – Measure ¹ Normal Mode	$Up \text{ to } 2 \Omega$ $(2 \text{ to } 20) \Omega$ $(20 \text{ to } 200) \Omega$ $(0.2 \text{ to } 2) \text{ k}\Omega$ $(2 \text{ to } 20) \text{ k}\Omega$ $(20 \text{ to } 200) \text{ k}\Omega$ $(0.2 \text{ to } 2) \text{ M}\Omega$ $(2 \text{ to } 20) \text{ M}\Omega$ $(20 \text{ to } 200) \text{ M}\Omega$ $(0.2 \text{ to } 2) \text{ G}\Omega$	$ \begin{array}{r} 17 \ \mu\Omega/\Omega + 3.9 \ \mu\Omega \\ 9.5 \ \mu\Omega/\Omega + 14 \ \mu\Omega \\ 7.8 \ \mu\Omega/\Omega + 47 \ \mu\Omega \\ 8.1 \ \mu\Omega/\Omega + 0.47 \ m\Omega \\ 7.8 \ \mu\Omega/\Omega + 4.7 \ m\Omega \\ 8.6 \ \mu\Omega/\Omega + 47 \ m\Omega \\ 9.5 \ \mu\Omega/\Omega + 93 \ m\Omega \\ 27 \ \mu\Omega/\Omega + 9.3 \ \Omega \\ 0.12 \ m\Omega/\Omega + 0.93 \ k\Omega \\ 0.14 \ \% \ of \ reading + 93 \ k\Omega \end{array} $	Comparison to Fluke 8508A 8.5 Digit Multimeter
DC Resistance – Measure ¹ Low Current Mode	Up to 2 Ω (2 to 20) Ω (20 to 200) Ω (0.2 to 2) kΩ (2 to 20) kΩ (2 to 20) kΩ (0.2 to 2) MΩ (2 to 20) MΩ (2 to 20) MΩ (2 to 200) MΩ (0.2 to 2) GΩ	$ \begin{array}{r} 17 \mu\Omega/\Omega + 3.9 \mu\Omega \\ 9.4 \mu\Omega/\Omega + 14 \mu\Omega \\ 8 \mu\Omega/\Omega + 0.14 m\Omega \\ 8.2 \mu\Omega/\Omega + 1.4 m\Omega \\ 7.9 \mu\Omega/\Omega + 14 m\Omega \\ 8.6 \mu\Omega/\Omega + 93 m\Omega \\ 21 \mu\Omega/\Omega + 0.93 \Omega \\ 88 \mu\Omega/\Omega + 93 \Omega \\ 0.14 \% of reading + 93 k\Omega \\ 0.14 \% of reading + 0.93 M\Omega \end{array} $	Comparison to Fluke 8508A 8.5 Digit Multimeter
DC Resistance – Measure ¹ High Voltage Mode	(2 to 20) MΩ (20 to 200) MΩ (0.2 to 2) GΩ (2 to 20) GΩ	$\begin{array}{c} 25 \ \mu\Omega/\Omega + 9.3 \ \Omega \\ 70 \ \mu\Omega/\Omega + 0.93 \ k\Omega \\ 0.19 \ m\Omega/\Omega + 93 \ k\Omega \\ 0.14 \ \% \ of \ reading + 9.3 \ M\Omega \end{array}$	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter
Inductance – Source ¹ (Variable Artifact)	1 kHz 1 μH to 999 mH	0.5 % of reading	Comparison to Inductance Decade Box characterized with Hameg LCR Meter
Inductance – Measure ¹	1 kHz 1 μH to 100 H	0.5 % of reading	Comparison to Hameg LCR Meter

Parameter/Equipment	quipment Range Expanded Uncertainty of Measurement (+/-)		Reference Standard, Method, and/or Equipment	
Oscilloscopes ^{1,2}				
Amplitude DC				
into 50 Ω load	(-6.6 to 6.6) V	0.22% of reading + 31 μ V		
into 1 M Ω load	(-130 to 130) V	0.12 % of reading + 31 μ V		
Amplitude Square Wave				
	10 Hz to 10 kHz			
into 50 22 10au	1 mVp-p to 6.6 Vp-p	0.22 % of reading + 31 μ V		
into 1 MO load	10 Hz to 1 kHz	0.22 /0 01 reading + 51 μ V		
1110 1 11122 1040	1 mVp-p to 130 Vp-p	0.078 % of reading + 31 μV		
	(1 to 10) kHz	0.078% of reading $+31~\mu$ V		
		$0.10.9$ of reading ± 21.4 W		
	1 mVp-p to 130 Vp-p	0.19 % of reading + 31 μ V		
Timin				
Timing – Generate	1 20	0.000 22.0/ 1		
into 50 Ω load		0.000 22 % reading		
	50 ms	0.005 9 % reading		
	100 ms	0.009 8 % reading		
	200 ms	0.018 % reading	Comparison to	
	500 ms	0.041 % reading	Fluke 5522A/11	
	1 s	0.08 % reading	Multiproduct Calibrator	
	2 s	0.16 % reading		
	5 s	0.39 % reading		
Rise Time – Generate				
into 50 Ω Load	5 mVp-p to 2.5 Vp-p			
Rate: 1 kHz to 2 MHz		50 ps		
Rate: 2 MHz to 10 MHz		50 ps		
Leveled Sine Wave –				
Generate				
into 50 Ω load	5 mVp-p to 5.5 Vp-p			
	50 kHz	1.8 % of reading + 0.23 mV		
	100 kHz to 100 MHz	2.8 % of reading + 0.23 mV		
	(100 to 300) MHz	3.2 % of reading + 0.23 mV		
	(300 to 600) MHz	4 % of reading $+$ 0.23 mV		
	5 mVp-p to 3.5 Vp-p			
	600 MHz to 1.1 GHz	5.5 % of reading + 0.23 mV		

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ^{1,2}			
Bandwidth/Flatness –			
Measure			
(50 kHz Reference)			
into 50 Ω load	5 mVp-p to 5.5 Vp-p		
	50 kHz to 100 MHz	1.4 % of reading + 78 μ V	
	(100 to 300) MHz	1.8 % of reading + 78 μ V	
	(300 to 600) MHz	3.2 % of reading + 78 μ V	
	5 mVp-p to 3.5 Vp-p		
	600 MHz to 1.1 GHz	4 % of reading + 78 μ V	
Least Laure de la Marana			Communican to
Input Impedance – Measure into 50 Ω load	(40 ± 60) O	0.082.9/ of reading	Comparison to Fluke 5522A/11
into 1 MΩ load		0.082 % of reading	
	(0.5 to 1.5) MΩ	0.081 % of reading	Multiproduct Calibrator
Input Capacitance – Measure	(5 to 50) pF	3.9 % of reading + 0.39 pF	
input Capacitance – Weasure	(3 to 50) pr	5.9 70 01 reading + 0.39 pr	
Wave Generator – Source	A A		
Amplitude			
(Sine, Square, Triangle)	10 Hz to 10 kHz		
into 50 Ω load		2.3 % of reading + 78 μV	
into 1 M Ω load		2.3% of reading + 78 μ V	
		0	
Frequency			
1 2	10 Hz to 10 kHz	0.001 9 % of reading + 12 mHz	

Length – Dimensional Metrology

Parameter/Equipment	Range	E	-	ded Uncertainty of asurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks, Length Standards ³ Standard Size Length	(0.005 to 0.5) in (0.55 to 1) in 2 in 3 in 4 in			2.6 μin 3.4 μin 5.5 μin 7.7 μin 9.9 μin	Mechanical Comparison using Master Gage Blocks

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks,			
Length Standards ³			
Standard Size Length	5 in	13 μin	
	6 in	15 μin	
	7 in	27 μin	Mechanical Comparison
	8 in	30 µin	using Master Gage Blocks
	10 in	37 µin	
	12 in	44 µin	
	16 in	58 µin	
	20 in	73 µin	
Non-standard Size Length	(0.001 to 0.005) in	4.9 μin	
_	(0.005 to 1) in	$(3 + 2L) \mu in$	
	(1 to 6) in	$(8.3 + 2.3L) \mu in$	
	(6 to 20) in	$(26 + 2.2L) \mu in$	
	(20 t <mark>o 40) in</mark>	(69 + 1.7L) µin	
	Up to 1 in	15 μin	Comparison to
Feeler Gages, ¹	·		Universal Length
Shims	Up to 25.4 mm	0.38 μm	Measuring Machine,
			Gage Blocks Comparison to
	Up to 24 in	24 µin	Indicator with
Height Masters ¹	00102411	24 μπ	Gage Amplifier,
fieight Wasters	Up to 600 mm	0.61 µm	Gage Blocks,
		0.01 µm	Surface Plate
	Up to 60 in	(8 + 3.5L) µin	Comparison to
Height Gages ^{1,3,5}		(° 2.02) p.m	Gage Blocks,
6 6	Up to 1 500 mm	$(0.2 + 0.003 5L) \mu\text{m}$	Surface Plate
	Up to 20 in	$(7 + 4.5L) \mu in$	
Micrometers ^{1,3,5}	·		Comparison to
	Up to 500 mm	$(0.2 + 0.005L) \mu m$	Gage Blocks
	Up to 80 in	(24 + 4.6L) µin	Comparison to
Calipers ^{1,3,5}			Gage Blocks
	Up to 2 000 mm	$(0.6 + 0.005L) \mu\text{m}$	Gage DIOCKS
LVDT's,	Up to 12 in	(3 + 3.3L) µin	Comparison to
Indicators ^{1,3,5}			Gage Blocks,
maioutors	Up to 300 mm	$(0.08 + 0.005L) \mu\text{m}$	Surface Plates
	Up to 5 ft	0.006 3 in	
Measuring Tapes,	(5 to 10) ft	0.013 in	Comparison to
Rulers ¹	(10 to 48) ft	140 µin/in	Ruler Calibrator
	(48 to 1 000) ft	120 µin/in	

Page 18 of 30

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Angle Blocks ^{1,3}	(0.25 to 90)°	(13+0.07 <i>A</i>)"	Comparison to Sine Bar, Gage Blocks, Surface Plate
Angle Measuring Devices ^{1, 3} (Protractors, Inclinometers, Squares, Angle Gages, etc.)	0.005 6" to 5° (5 to 20)° (20 to 35)° (35 to 45)° (45 to 60)° (60 to 75)° (75 to 85)°	3.3" 6.5" 12" 17" 28" 59" 190"	Comparison to 5 in Sine Bar, Gage Blocks
Chamfer Gage ¹	(0.15 to 2) in (3.8 to 50) mm	290 μin 7.5 μm	Comparison to Reference Ring Gages
Cylindrical Square Squareness	Up to 24 in Up to 600 mm	25 μin 0.6 μm	Comparison to Indicator, Height Stand, Surface Plate
Electronic Levels, Inclination Levels ³	Up to 1 000"	0.23"	Comparison to Sine Bar, Gage Blocks, Surface Plate
Spirit Levels, Clinometers ⁵	Up to 4 ft Up to 1.2 m	50 μin/ft 1.3 μm/m	Sine Bar, Gage Blocks, Surface Plate
Sine Plates/Bars ³ Parallelism Angle	Up to 15 in (0 to 45)°	78 μin (10 + 0.6 <i>A</i>)"	Comparison to Surface Plate, Indicator with Gage Amplifier,
Optical Flats/Parallels	Up to 4 in	6.4 μin	Gage Blocks, Angle Blocks Comparison to Master Optical Flat
Cylindrical Pins/Plugs ³	Up to 100 mm (0.003 to 40) in	0.16 μm (8 + 0.8 <i>D</i>) μin	Comparison to Gage Blocks, Universal Length Measuring Machine

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Cylindrical Rings/Bores ³	(0.02 to 33) in	(4.8 + 0.9 <i>D</i>) μin	Comparison to Gage Blocks, Universal Length Measuring Machine
CMM Spheres, Gage Balls	(0.015 to 4) in (0.38 to 100) mm	12 μin 0.3 μm	Comparison to Gage Blocks, Universal Length Measuring Machine
Thread Wires	(0.003 to 0.825) in 76 µm to 30 mm	10 μin 0.25 μm	Comparison to Master Thread Wires, Gage Blocks, Universal Length Measuring Machine
Thread Pitch Gages	Up to 6 in	430 μin	Comparison to Optical Comparator
Thread Plug Gages ^{1, 3} Pitch Diameter, (40 to 80) TPI	Up to 1.25 in (1.25 to 4.5) in (4.5 to 7) in	97 μin 100 μin 110 μin	Comparison to Universal Length Measuring Machine, Master Thread Wires, Gage Blocks
Major Diameter	Up to 1.75 in (1.75 to 7) in	59 μin (56 + 2 <i>D</i>) μin	Universal Length Measuring Machine, Gage Blocks
Step Height	Up to 1 in	160 µin	Gage Blocks, Test Stand
Thread Ring Gages ³ Pitch Diameter Minor Diameter	Up to 20 in Up to 20 in	(66 + 0.26 <i>D</i>) μin 45 μin	Comparison to Universal Length Measuring Machine, Thread Balls,
Thread Ring Gages ^{1,3} Inner Pitch Diameter	Up to 2 in (2 to 12) in	(140 + 27.5D) μin (160 + 18D) μin	Gage Blocks Comparison to Master Thread Plug Gages
Adjustable Thread Rings ³ Pitch Diameter	Up to 2 in	$(140 + 2D) \mu in$	Tactile Fit to Class X Master Set Plugs
Parallels, Straight Edges	Up to 12 in	40 μin	Comparison to Indicator, Height Stand, Surface Plate

Page 20 of 30

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Planekator	Up to 48 in	57 µin	Comparison to Laser System, Surface Plate
Profilometers, Surface Testers ¹ (Primary)	Ra = 120 µin	8.4 µin	Comparison to Master Surface Patch
Profilometers, Surface Testers ¹ (Secondary)	Ra = (10 to 200) µin	8 % of reading + 2.6 μ in	Comparison to Surface Patches
Roughness Standards/Patches (ISO Type C)	Ra = (10 to 200) µin	7 % of reading + 1.5 μin	Comparison to Master Surface Patch, Profilometer
Coating Thickness Meters ¹	(0.94 to <mark>20.24) mils</mark>	0.095 mils	Comparison to Coating Thickness Standards
V-Blocks Groove	Up to <mark>4</mark> in	64 µin	Comparison to Indicator, Height Stand,
Squareness	Up to 24 x 24 x 24 in	45 µin	Surface Plate
Bench Micrometers, Universal Length Measuring Machines ^{1,3,5} Standard Length	(> 0.005 to 1) in 2 in 3 in 4 in 5 in 6 in 7 in 8 in 10 in 12 in 16 in 20 in	(2.5 + 0.5 <i>L</i>) μin 4.2 μin 4.9 μin 6.4 μin 8.1 μin 8.9 μin 9.7 μin 11 μin 12 μin 14 μin 17 μin 20 μin	Comparison to Gage Blocks, Long Gage Blocks
Non-standard Length	(20 to 40) in	(20 + 0.86 <i>L</i>) μin	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Coordinate Measuring Machines (CMM's) ^{1,3} Linear Displacement Accuracy (X, Y, Z)	Up to 72 in	(8 + 3 <i>L</i>) μin	Comparison to Gage Blocks, Optical Flats
Volumetric Repeatability	Up to 72 in	100 µin	Ball Bar
Probe Repeatability	Up to 72 in	25 µin	Sphere
Optical Comparators ^{1,3} X,Y Measuring Stage Travel	Up to 12 in	(130 + 17 <i>L</i>) μin	Comparison to Calibration Grids
Squareness	(0.4 to 1) in	120 µin	Calibration Grids
Magnification	10X to 62.5X	(240 + 21 <i>L</i>) μin	Magnification Checker
Radius Gages	Up to 2 in	<mark>460 μi</mark> n	Comparison to Optical Comparator
Granite Surface Plates ^{1,3}	A A	A A A	In accordance with
Overall Flatness	(8.49 to 299.25) <i>DL</i>	4 √ <i>DL</i> µin	ASME B89.3.7 using Electronic Level System
Local Area Flatness (Repeat Readings)	Up to 0.005 in	40 µin	Repeat-o-Meter
Torque Wheels, Torque Arms ³	Up to 40 in	(470 + 2 <i>L</i>) μin	Comparison to Surface Plate, Indicator with Gage Amplifier, Gage Blocks, Digital Outside Micrometer
Depth Micrometers ^{1,3}	(0.01 to 72) in	(50 + 55.1 <i>L</i>) μin	Comparison to Gage Blocks

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Air Velocity Measuring Devices (Anemometers, Thermal, Pitot, Vane-style and Similar	(30 to 250) ft/min (250 to 1 500) ft/min (1 500 to 9 000) ft/min	2.3 % of reading + 2.6 ft/min 2.3 % of reading + 6 ft/min 1.2 % of reading + 17 ft/min	Comparison to Wind Tunnel
Equipment)	```		

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gas Mass Flow ¹ (Flow Meters, Flow Controllers,	(1 to 10) sccm (10 to 1 000) sccm	0.25 sccm 0.22 % of reading	Comparison to Fluke molBloc-L Calibration System
Rotameters, and Leak Orifices)	(1 to 1 000) slpm	0.1 % of reading	Comparison to Fluke molBloc-S Calibration System
Liquid Flow Meters ¹	Up to 10 gpm	1.4 % of reading + 0.001 8 gpm	Calibration by Time and Mass
Hydrometers	(0.6 to 0.64) SG (0.64 to 1.67) SG (1.67 to 2) SG	0.002 5 SG 0.001 4 SG 0.005 SG	Comparison to Reference Hydrometer per ASTM E126.
Kinematic Viscosity Meters ¹	< 10 mm ² /s (11 to 100) mm ² /s (101 to 1000) mm ² /s (1001 to 10 000) mm ² /s (10 001 to 100 000) mm ² /s	0.25 % of reading 0.32 % of reading 0.37 % of reading 0.44 % of reading 0.51 % of reading	Comparison to Accredited Viscosity Standard, Temperature Indicator with Probe
Viscosity Cups ¹ (Kinematic Viscosity @ 25 °C) Zahn	(5 to 1 800) mm ² /s	2.2 % of reading	Accredited Viscosity Standard per ASTM D4212
Shell	(2 to 1 300) mm ² /s	2.2 % of reading	ASTM D4212
Ford Piston Operated Volumetric Apparatus ⁷ (Pipettes, Syringes, Burettes, Liquid, Handlers, Dispensers)	(2 to 1 400) mm ² /s (1 to 2 000) μL (2000 to 10 000) μL (10 000 to 100 000) μL	2.2 % of reading 94 nL 0.22 μL 2 μL	ASTM D1200 Gravimetric Method using Electronic Balances and ASTM E617 Class 1 Weights.
Volume Measuring Equipment ¹	(0.001 to 4 000) mL	0.8 µL	Per ASTM E542 using Temperature Indicator with Probe, Electronic Balance, Distilled Water, Barometer
	(25 to 250) cN (250 to 2 000) cN	5.2 cN 52 cN	Comparison to Correx Gram Gauge
Load Cells, Force Testers,	(0 to 500) lbf	0.088 % of reading	Comparison to NIST Class F Weights
Force Gages ¹ (Tension and Compression)	(100 to 5 000) lbf (5 000 to 10 000) lbf (10 000 to 25 000) lbf (25 000 to 50 000) lbf	0.008 % of reading + 1.7 lbf 0.013 % of reading + 1.7 lbf 0.013 % of reading + 4.2 lbf 0.013 % of reading + 8.3 lbf	Comparison to Tovey Engineering Calibration System

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Durometers ¹ (Type A, B, C, CF, D, DO, E, M, O, OO, OOO-S, SA, ASKER C) Indenter Dimensions Extension Length Diameter Angle Radius	Ûp to 1 in	160 μin 170 μin 0.1° 170 μin	Direct Verification per ASTM D2240 using Optical Comparator
Spring Force Shore Durometer Calibrators Dimensional Measurements	(0 to 100) Duro Up to 8 in	0.34 Duro 480 μin	Durometer Calibrator Comparison to Optical Comparator
Mass	Up to 4 kg	30 mg	Single Substitution Method using Electronic Balance
Rockwell Hardness and Superficial Testers ¹	HRBW (80 to 100) HRBW (60 to 79) HRBW (40 to 59) HRBW HRC (60 to 65) HRC (35 to 55) HRC (20 to 30) HRC	0.48 HRBW 0.77 HRBW 1.1 HRBW 0.37 HRC 0.48 HRC 0.57 HRC	Indirect verification per ASTM E18 using hardness test blocks.
Mass Determination ¹ (Variable)	$\begin{array}{c} 1 \text{ mg to 5 g} \\ (5 \text{ to 30) g} \\ (30 \text{ to 200) g} \\ (200 \text{ to 500) g} \\ (500 \text{ to 2000) g} \\ (500 \text{ to 2000) g} \\ (2 \text{ to 10) kg} \\ (10 \text{ to 30) kg} \\ (30 \text{ to 45) kg} \end{array}$	21 µg 24 µg 0.21 mg 2.1 mg 2.1 mg 0.21 g 0.24 g 0.24 g 0.25 g	Comparison to Electronic Balances, OIML Class E1 Weights, ASTM E617 Class 1 Weights

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Mass Determination (Fixed Points)	1 mg 2 mg 5 mg 10 mg 20 mg 50 mg 100 mg 200 mg 500 mg 1 g 2 g 5 g 10 g 20 g 50 g 100 g 200 g 500 g 1 kg	4.2 μg 4.2 μg 4.2 μg 4.2 μg 4.2 μg 4.2 μg 4.3 μg 4.5 μg 4.5 μg 4.5 μg 4.5 μg 9.1 μg 11 μg 15 μg 19 μg 28 μg 18 μg 0.13 mg 0.91 mg 0.86 mg	Comparison to Electronic Balances, OIML Class E1 Weights
Pneumatic Pressure Measuring Equipment ¹ (Absolute, Gauge)	(0.1 to 15) psi	0.003 4 % of reading + 0.000 5 psi	Comparison to Ruska 7010 Pressure Controller/Calibrator Comparison to Ruska 7215I
	(0.1 to 1 000) psi	0.006 % of reading + 0.015 psi	Pressure Controller/Calibrator
Pressure Measuring Equipment ¹ (Absolute, Gauge, Negative and Positive)	(-104 to -7.5) kPa (-7.5 to -2.9) kPa (-2.9 to -0.75) kPa (-0.75 to 0.75) kPa (0.75 to 2.9) kPa	0.007 7 % of reading + 5.2 Pa 0.009 1 % of reading 0.009 % of reading + 35 mPa 0.007 5 % of reading + 51 mPa 0.009 % of reading + 35 mPa	Comparison to Fluke PPC4 Pressure Controller/Calibrator
Pressure Measuring Equipment ¹ (Absolute, Gauge, Negative and Positive)	(2.9 to 7.5) kPa (7.5 to 26) kPa (26 to 63) kPa (63 to 700) kPa (700 to 7 000) kPa	0.009 1 % of reading 0.007 7 % of reading + 1.3 Pa 0.009 % of reading + 50 mPa 0.008 % of reading + 0.7 Pa 0.008 % of reading + 0.3 Pa	Comparison to Fluke PPC4 Pressure Controller/Calibrator
Pressure Measuring Equipment (Absolute, Gauge)	(7 000 to 82 737) kPa	0.005 % of reading	Comparison to Ruska 2400HL Hydraulic Piston Gauge

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Pneumatic Only Pressure	(9 to 385) kPa	0.001 2 % of reading + 0.1 Pa	Comparison to
Measuring Equipment	(70 to 825) kPa	0.002 % of reading + 0.6 Pa	Fluke PG7601
Absolute, Gauge	(140 to 7 650) kPa	0.002 % of reading + 1.2 Pa	Gas Piston Gauge
Scales and Balances ^{1,8} Metric (SI)	Up to 500 mg (0.5 to 5) g (5 to 10) g (10 to 20) g (20 to 100) g (100 to 200) g	22 μg 29 μg 39 μg 54 μg 0.28 mg 0.43 mg	ASTM E617 Class 1 weights and NIST HB44 utilized in the calibration of the
	(100 to 200) g (0.2 to 2) kg (2 to 20) kg	0.002 2% of reading 0.004 2% of reading	weighing system.
Scales and Balances ^{1,8} Avoirdupois	Up to 0.5 lb (0.5 to 1) lb (1 to 2 000) lb	0.026 % of reading 0.019 % of reading 0.013 % of reading	NIST Class F weights and NIST HB44 utilized in the calibration of the weighing system.
Scales and Balances ^{1,8} Metric (SI)	Up to 250 g (250 to 500) g (0.5 to 908) kg	0.026 % of reading 0.019 % of reading 0.013 % of reading	NIST Class F weights and NIST HB44 utilized in the calibration of the weighing system.
Torque Wrenches, Torque Watches ¹	(1 to 1 000) lbf·in (1 to 1 000) lbf·ft	0.52 % of reading 0.52 % of reading	Comparison to Torque Transducers, Torque Indicators, Manual Loader
Torque Transducers, Torque Meters ¹	(1 to 1 000) lbf·in (1 to 1 000) lbf·ft	0.09 % of reading 0.08 % of reading	Comparison to Torque Wheels, Torque Arms, NIST Class F Weights

Photometry and Radiometry

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Light Meters	Up to 40 lux	3.6 % of reading + 0.2 lux	
	(40 to 400) lux	3.6% of reading + 2 lux	Comparison to
	(400 to 4 000) lux	3.6% of reading + 20 lux	Master Light Meter
	(4 000 to 40 000) lux	4.5 % of reading + 200 lux	_

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dew Point Measuring Equipment ¹	(-25 to 68) °C	0.15 °C	Comparison to Thunder Scientific 2500 Two-pressure Humidity Generator
Dew Point – Measure ¹	(-15 to 20) °C	0.26 °C	Comparison to Chilled Mirror
Relative Humidity – Source ¹	(-10 to 15) °C (10 to 75) % RH (75 to 95) %RH (15 to 35) °C (10 to 95) %RH (35 to 70) °C (10 to 50) %RH (50 to 75) %RH (75 to 95) %RH	0.5 %RH 0.65 %RH 0.5 %RH 0.5 %RH 0.7 %RH 0.85 %RH	Comparison to Thunder Scientific 2500 Two-Pressure Humidity Generator
Relative Humidity – Measure $\frac{1}{1}$	(10 to 9 <mark>5) %RH</mark>	1.3 %RH	Comparison to Chilled Mirror
Temperature Measuring Equipment	0.01 °C	1.5 mK	Comparison to Triple Point of Water
Temperature Measuring Equipment by Comparison ^{2,3} NBPLN ₂ Hg In Sn Zn Al	-38.8 °C 156.6 °C 231.9 °C	4 mK 5 mK 5 mK 5 mK 4 mK 10 mK	Comparison to Fluke 1595A Super Thermometer, Fluke 5628 Secondary PRT
Temperature – Measure ¹ (PRT, RTD, Thermistor, Thermocouple, Stirred Baths, Liquid Baths)	(-95 to 700) °C	10 mK	Comparison to SPRT and Indicator
Infrared Thermometers ¹	(-15 to 0) °C (0 to 50) °C (50 to 100) °C (100 to 120) °C (120 to 200) °C (200 to 350) °C (350 to 500) °C	0.83 °C 0.66 °C 0.67 °C 0.72 °C 0.97 °C 1.6 °C 2.2 °C	Comparison to Blackbody Source (Flat Plate) $\lambda = (8 \text{ to } 14) \mu \text{m},$ $\mathcal{E} = (0.9 \text{ to } 1)$

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Source/Measure Reference ¹	10 MHz	3.7 pHz/Hz	Comparison to Fluke 910R GPS Frequency Standard
Frequency – Source ¹	1 µHz to 80 MHz	0.58 µHz/Hz	Comparison to Agilent 33250A Arbitrary Waveform Generator
	250 kHz to 3 GHz	0.58 µHz/Hz	Comparison to Agilent E4432B RF Signal Generator
Frequency – Measure ¹	1 Hz to 12.4 GHz	51 pHz/Hz	Comparison to Agilent 53132A Universal Frequency Counter
AC Duty Cycle – Source ¹ Square Wave: < 3.3 Vp-p Freq: 0.1 Hz to 100 kHz	 (1 to 10) % Duty Cycle 10 μs to 100 s (10 to 49) % Duty Cycle 10 μs to 100 s 50 % Duty Cycle 10 μs to 100 s (51 to 90) % Duty Cycle 10 μs to 100 s (90 to 99) % Duty Cycle 10 μs to 100 s 	0.62 % of reading + 78 ns 0.039 % of reading + 78 ns 0.001 6 % of reading + 78 ns 0.039 % of reading + 78 ns 0.62 % of reading + 78 ns	Comparison to Fluke 5522A Multiproduct Calibrator
Stopwatches, Timers ¹	Up to 19.99 s/d	58 ms/d	Comparison to Helmut Klein TM-4500 Timometer
Tachometers – Optical Pickup ^{1,3}	(0 to 60 000) rpm	0.000 23 % of reading + 0.001 2 rpm	Comparison to Agilent 33250A Arbitrary Waveform Generator, LED
Tachometers – Contact ^{1,3}	(1 to 10) rpm (10 to 1 000) rpm (1 000 to 8 000) rpm (8 000 to 20 000) rpm	0.012 % of reading + 0.085 rpm 0.012 % of reading + 0.12 rpm 0.012 % of reading + 0.53 rpm 0.012 % of reading + 5 rpm	Comparison to Tachometer Calibrator, Master Optical Tachometer
Rotation Speed – Measure ^{1,3}	(6 to 8 300) rpm	1.7 rpm	Comparison to
(Conveyor Belts, Line Speed, Centrifuges, and Mechanical	(8 300 to 99 999) rpm (6 to 8 300) rpm	2.6 rpm 2.4 rpm	Optical Tachometer Comparison to
Tachometers)	(8 300 to 99 999) rpm	3 rpm	Mechanical Tachometer

DIMENSIONAL MEASUREMENT

1 Dimensional

1 Dimensional		N	
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurement – 1D ¹	Up to 12 in	<mark>1 500</mark> μin	Digital Caliper utilized as the reference standard for 1-D Length Measurements.
Dimensional Measurement – 1D ¹	Up to 1 in	150 µin	Digital Outside Micrometer utilized as the reference standard for 1-D Length Measurements.
Dimensional Measurement – 1D ¹	Up to 6 in	150 µin	Digital Depth Micrometer utilized as the reference standard for 1-D Length Measurements.
Dimensional Measurement – 1D ¹	Up to 1 in	600 µin	Gage Pins utilized as the reference standard for 1-D Length Measurements.

2 Dimensional

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurement – 2D	Up to 6 in	(420 + 0.52 <i>L</i>) μin	Optical Comparator utilized as the reference standard for 2-D Length Measurements.
Dimensional Measurement – 2D	Up to 30 in	200 μin	CMM utilized as the reference standard for 2-D Length Measurements.
Surface Finish ¹	Ra = (10 to 200) µin	7 % of reading + 1.5 μin	Profilometer utilized as a reference standard for Dimensional Inspection.

3 Dimensional

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurements -	X-axis: Up to 18 in	$(300 + 43L) \mu in$	CMM utilized as the
3D ³	Y-axis: Up to 20 in	$(300 + 44L) \mu in$	reference standard for 3-D
(Volumetric)	Z-axis: Up to 16 in	(300 + 42L) µin	Length Measurements.

Version 005 Issued: February 17, 2025

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%. Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. The values represented here are nominal values. The certified values and associated uncertainty will be reported at the time of calibration.
- 3. L = length in inches or millimeters; rpm = revolutions per minute; PF = Power Factor; A = Angle in degrees (°); " = arcsecond; D = diameter in inches or millimeters; DL = diagonal length in inches; NBPLN₂ = Boiling Point of Liquid Nitrogen.
- 4. The uncertainties shown are for the most favorable conditions. There is an increase in uncertainty that corresponds to the laboratory's AC voltage and current uncertainties at different frequencies other than the ones shown. Power factors (PF) other than the one shown contribute to the power uncertainty. PF is related to the cosine of phase. Therefore, uncertainties track the laboratory's phase uncertainty closely at PF near one but are magnified heavily as PF approaches zero. The lab may also report reactive power, apparent power, and power factor under this accreditation. If needed, contact the laboratory for more information regarding uncertainties at frequency and power factor combinations other than the ones shown.
- 5. At the time of Calibration, 0.6R will be added to the Measurement Uncertainty, where R = resolution of the unit under calibration.
- 6. ΔP measurement with density correction for standard condition normalization.
- 7. The contributions from "the best existing device" are not included in the CMC presented claim.
- The CMC for scales and balances is highly dependent upon the resolution of the unit under test. The CMC presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.
- 9. Volume calculations are based on independent linear measurements.
- 10. The legal entity name for this client is Transcat, Inc.
- 11. Unless otherwise specified in the far-right column, the calibration procedure/method utilized by the laboratory was internally written.
- 12. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-2489.30.

Jason Stine, Vice President

