Stanford Research Systems SR830 for Rent, DSP Lock-In Amplifier, 1mHz - 102.4kHz, Dual Output
DSP Lock-In Amplifier, 1mHz - 102.4kHz, Dual Output

Order #: SR830-RENT2

Mfg #: SR830

Questions about availability or need help? Contact Us:

(800) 633-0561
Call for price
Call for price

Stanford Research Systems SR830 for Rent, DSP Lock-In Amplifier, 1mHz - 102.4kHz, Dual Output

DSP Lock-In Amplifier, 1mHz - 102.4kHz, Dual Output

Order #: SR830-RENT2

Mfg #: SR830

Call for price

Request a Rental Quote

Have a Question? Speak to a Transcat Rental Expert: 800.264.4059

Call for price

Product Highlights

The Stanford Research SR830 simultaneously displays the magnitude and phase of a signal. The SR830 uses digital signal processing (DSP) to replace the demodulators, output filters, and amplifiers found in conventional lock-ins. The SRS SR830 provides uncompromised performance with an operating range of 1 MHz to 102 kHz and 100 dB of drift-free dynamic reserve.

The SR830 features differential inputs with 6 nV/√Hz input noise. The input impedance is 10 MOhm, and minimum full-scale input voltage sensitivity is 2 nV. The input can also be configured for current measurements with selectable current gains of 106 and 108 V/A. A line filter (50 Hz or 60 Hz) and a 2x line filter (100 Hz or 120 Hz) are provided to eliminate line related interference. However, unlike conventional lock-in amplifiers, no tracking band-pass filter is needed at the input. This filter is used by conventional lock-ins to increase dynamic reserve. Unfortunately, band pass filters also introduce noise, amplitude and phase error, and drift. The DSP based design of these lock-ins has such inherently large dynamic reserve that no tracking band-pass filter is needed.

The dynamic reserve of a lock-in amplifier at a given full-scale input voltage is the ratio (in dB) of the largest interfering signal to the full-scale input voltage. The largest interfering signal is defined as the amplitude of the largest signal at any frequency that can be applied to the input before the lock-in cannot measure a signal with its specified accuracy.

Conventional lock-in amplifiers use an analog demodulator to mix an input signal with a reference signal. Dynamic reserve is limited to about 60 dB, and these instruments suffer from poor stability, output drift, and excessive gain and phase error. Demodulation in the SR830 Lock-In Amplifier is accomplished by sampling the input signal with a high-precision A/D converter, and multiplying the digitized input by a synthesized reference signal. This digital demodulation technique results in more than 100 dB of true dynamic reserve (no prefiltering) and is free of the errors associated with analog instruments.

The digital signal processor also handles the task of output filtering, allowing time constants from 10 µsec to 30,000 s, with a choice of 6, 12, 18 and 24 dB/oct rolloff. For low frequency measurements (below 200 Hz), synchronous filters can be engaged to notch out multiples of the reference frequency. Since the harmonics of the reference have been eliminated (notably 2F), effective output filtering can be achieved with much shorter time constants.

Analog phase shifting circuits have also been replaced with a DSP calculation. Phase is measured with 0.01degree resolution, and the X and Y outputs are orthogonal to 0.001degree.

Auto-functions allow parameters that are frequently adjusted to automatically be set by the instrument. Gain, phase, offset and dynamic reserve are each quickly optimized with a single key press. The offset and expand features are useful when examining small fluctuations in a measurement. The input signal is quickly nulled with the auto-offset function, and resolution is increased by expanding around the relative value by up to 100x. Harmonic detection is no longer limited to only the 2F component. Any harmonic (2F, 3F, ... nF) up to 102 kHz can now be measured without changing the reference frequency.

The SR830 has a user-defined output for measuring X, R, X-noise, Aux1, Aux 2, or the ratio of the input signal to an external voltage. The SR830 has a second, user-defined output that measures Y, _, Y-noise, Aux 3, Aux 4 or ratio. The SR830 both have X and Y analog outputs (rear panel) that are updated at 256 kHz. Four auxiliary inputs (16-bit ADCs) are provided for general purpose use-like normalizing the input to source intensity fluctuations. Four programmable outputs (16-bit DACs) provide voltages from -10.5 V to +10.5 V and are settable via the front panel or computer interfaces.

The SR830 has two 16,000 point buffers to simultaneously record two measurements. Data is transferred from the buffers using the computer interfaces. A trigger input is also provided to externally synchronize data recording.

The SR830 Lock-In Amplifier is simple to use. All instrument functions are set from the front-panel keypad, and a spin knob is provided to quickly adjust parameters. Up to nine different instrument configurations can be stored in non-volatile RAM for fast and easy instrument setup. Standard RS-232 and GPIB interfaces allow communication with computers. All functions can be controlled and read through the interfaces.

  • 1 mHz to 102.4 kHz range
  • >100 dB dynamic reserve
  • 5 ppm/C stability
  • 0.01 degree phase resolution
  • Time constants from 10 us to 30 ks
  • (up to 24 dB/oct rolloff)
  • Auto-gain, -phase, -reserve and -offset
  • Reference source
  • GPIB and RS-232 interfaces
Win a Generac Generator when purchasing $750 or more from Transcat.Win a Generac Generator when purchasing $750 or more from Transcat.